Partition functions for matrix models and isomonodromic tau functions

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2003 J. Phys. A: Math. Gen. 363067
(http://iopscience.iop.org/0305-4470/36/12/313)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.96
The article was downloaded on 02/06/2010 at 11:30

Please note that terms and conditions apply.

Partition functions for matrix models and isomonodromic tau functions

M Bertola ${ }^{1,2}$, B Eynard ${ }^{1,3}$ and J Harnad ${ }^{1,2}$
${ }^{1}$ Centre de recherches mathématiques, Université de Montréal, CP 6128, succ. centre ville, Montréal, Québec, Canada H3C 3J7
${ }^{2}$ Department of Mathematics and Statistics, Concordia University, 7141 Sherbrooke W, Montréal, Québec, Canada H4B 1R6
${ }^{3}$ Service de Physique Théorique, CEA/Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex, France
E-mail: bertola@crm.umontreal.ca, eynard@spht.saclay.cea.fr and harnad@crm.umontreal.ca

Received 15 May 2002
Published 12 March 2003
Online at stacks.iop.org/JPhysA/36/3067

Abstract

For one-matrix models with polynomial potentials, the explicit relationship between the partition function and the isomonodromic tau function for the 2×2 polynomial differential systems satisfied by the associated orthogonal polynomials is derived.

PACS numbers: $02.10 . \mathrm{Yn}, 02.30 . \mathrm{Ik}$

1. Introduction

It is well known [15, 27, 34] that the partition functions for matrix models, for both finite $n \times n$ random matrices and suitable $n \rightarrow \infty$ limits, provide τ functions for the KP hierarchy. It is also known that such partition functions satisfy certain constraints amounting to the invariance of the corresponding elements in the associated infinite Grassmannian under a set of positive Virasoro generators. This generally implies that there exist differential operators in the spectral parameter variable which annihilate the associated Baker-Akhiezer functions. The compatibility of the differential equations in the spectral parameter and deformation parameters representing KP-flows implies that the monodromy of the operator in the spectral parameter is invariant under such deformations. In the large n limit this was considered in [26], while for finite n it was studied in [21]. Associated with the analyticity properties of the Baker-Akhiezer functions is an isomonodromic tau function [22], defined similarly as the KP tau function.

In practice, the exact relationship between such 'isomonodromic' tau functions and the KP tau function is not very clearly understood. There are special cases, however (see, e.g., [1-3, 14, 16, 17, 20-22, 26]) where these two quantities can either be shown to be identical, or
at least explicitly related. In the computation of spacing distributions for random matrices, a class of isomonodromic tau functions occurs, given by Fredholm determinants of 'integrable' integral operators [$9,17,18,28,32,33$] supported on a union of intervals, with the deformation parameters taken as the endpoints of the intervals rather than as KP flow parameters. The precise relation between such deformations and the KP flows is not yet clearly understood. (See, however, $[1,2,16,34]$ for some indications of the links between the two.)

It is our purpose here to analyse in detail, for a generalization of the simplest version of the Hermitian one-matrix model, with measures that are exponentials of polynomial trace invariants, exactly what this relationship is. The main idea is to consider, for finite n (the size of the random matrix), the isomonodromic deformation systems satisfied by the associated sequence of orthogonal polynomials, and to compute an explicit formula (theorem 2.4) relating the associated isomonodromic tau function to the partition function of the generalized matrix model. In the process, we recall (and generalize) some of the standard results concerning the relation of isomonodromic deformations to random matrices and the occurrence of Stokes phenomena in solutions of the associated systems of differential equations with polynomial coefficients.

2. Orthogonal polynomials for semiclassical functionals

We consider the orthogonal polynomials for a moment functional

$$
\begin{align*}
& \mathcal{L}_{\varkappa \Gamma}: \mathbb{C}[x] \mapsto \mathbb{C} \tag{2.1a}\\
& \mathcal{L}_{\varkappa \Gamma}\left(x^{i}\right):=\int_{\varkappa \Gamma} \mathrm{d} x \mathrm{e}^{-V(x)} x^{i} \tag{2.1b}
\end{align*}
$$

where the integration over $\varkappa \Gamma$ represents a suitable linear combination of integrals over contours to be explained in detail below. The function $V(x)$ is called the potential and will be taken here to be a polynomial of degree $d+1$,

$$
\begin{equation*}
V(x):=\sum_{K=1}^{d+1} u_{K} \frac{x^{K}}{K} \tag{2.2}
\end{equation*}
$$

in which the coefficients $\left\{u_{K}\right\}$ are viewed as deformation parameters. (The constant term is suppressed since it only contributes to the overall normalization.)

This is a generalized setting which reduces to the ordinary orthogonal polynomials when the measure is positive and the contour of integration is on the real axis. We do not assume that $V(x)$ is of even degree or that it is real; the moment functional (2.1) is in general complex-valued. In this general setting the orthogonal polynomials (if they exist) are defined as follows.

Definition 2.1. The (monic) orthogonal polynomials $\left\{p_{n}(x)\right\}_{n \in \mathbb{N}}$ are defined by the requirements

$$
\begin{align*}
& \mathcal{L}_{\chi \Gamma}\left(p_{n}(x) p_{m}(x)\right)=h_{n} \delta_{n m} \quad h_{n} \in \mathbb{C}^{\times} \tag{2.3a}\\
& p_{n}(x)=x^{n}+\cdots . \tag{2.3b}
\end{align*}
$$

It is easily seen [31] that such polynomials exist if and only if the Hankel determinants formed from the moments do not vanish

$$
\begin{equation*}
\Delta_{n}(\varkappa \Gamma, V):=\operatorname{det}\left(\mathcal{L}_{\Gamma}\left(x^{i+j}\right)\right)_{0 \leqslant i, j \leqslant n-1} \neq 0 \quad \forall n \in \mathbb{N} . \tag{2.4}
\end{equation*}
$$

(If they do exist, equations (2.3a) and (2.3b) determine them uniquely.)

Figure 1. An example of the contours Γ_{k} in the case $d=7$.

We now return to the definition of the cycle $\varkappa \Gamma$. The convergence of the integral defining the moment functional \mathcal{L} implies that the contour of integration must extend to infinity in such a way that the real part of $V(x)$ diverges to $+\infty$. For the purpose of the description of $\varkappa \Gamma$ let us introduce the sectors

$$
\begin{align*}
\mathcal{S}_{k} & :=\left\{x \in \mathbb{C}, \arg (x) \in\left(\vartheta+\frac{(2 k-1) \pi}{2(d+1)}, \vartheta+\frac{(2 k+1) \pi}{2(d+1)}\right)\right\} \tag{2.5}\\
\vartheta & :=\frac{\arg \left(u_{d+1}\right)}{d+1} \quad k=0, \ldots, 2 d+1 .
\end{align*}
$$

These sectors are defined in such a way that $\Re(V(x)) \rightarrow+\infty$ in the even numbered sectors. Therefore, a contour should come from infinity in an even sector and return to infinity in a different even sector. Such functionals have been studied in a similar setting in [23, 24].

We define the contours $\Gamma_{k}, k \in \mathbf{Z}_{d}$ as the ones coming from infinity in the sector $\mathcal{S}_{2 k-2}$ and returning to infinity in the sector $\mathcal{S}_{2 k}$ (see figure 1). It follows from the Cauchy theorem that the corresponding $d+1$ functionals $\mathcal{L}_{\Gamma_{k}}$ satisfy

$$
\begin{equation*}
\sum_{k=0}^{d} \mathcal{L}_{\Gamma_{k}}=0 \tag{2.6}
\end{equation*}
$$

but it can be shown that any d of them are linearly independent [23]. In general, we may consider any linear combination of such moment functionals corresponding to a 'one-cycle' and the corresponding deformation theory under changes of complex generalized measure. The quantities $\varkappa \Gamma$ and $\mathcal{L}_{\varkappa \Gamma}$ are understood to mean

$$
\begin{equation*}
\varkappa \Gamma:=\sum_{k=1}^{d} \varkappa_{k} \Gamma_{k} \tag{2.7a}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{L}_{\varkappa \Gamma}(\cdot):=\sum_{k=1}^{d} \varkappa_{k} \mathcal{L}_{\Gamma_{k}}(\cdot):=\sum_{k=1}^{d} \varkappa_{k} \int_{\Gamma_{k}} \mathrm{~d} x \mathrm{e}^{-V(x)}(\cdot)=: \int_{\varkappa \Gamma} \mathrm{d} x \mathrm{e}^{-V(x)}(\cdot) \tag{2.7b}
\end{equation*}
$$

where $\left\{\varkappa_{k} \in \mathbb{C}\right\}_{k=1, \ldots, d}$ are any fixed set of constants (not all vanishing). (A similar setting, in which the contours Γ_{k} play the roles of boundaries between Stokes sectors, was considered, e.g., in the earlier works $[6,14,20,21]$.)

For a fixed potential $V(x)$ the Hankel determinants $\Delta_{n}(\varkappa \Gamma, V)$ are homogeneous polynomials in \varkappa of degree n. The nonvanishing of this denumerable set of polynomials determines a set with full (Lebesgue) measure in the \varkappa space and in this sense the orthogonal polynomials exist for generic \varkappa. (An interesting problem, which will not be addressed here, is whether the set of \varkappa for which the orthogonal polynomials exist contains an open set, thus allowing for arbitrary infinitesimal deformations.)

If the contour of integration is not the real axis this setting does not derive in general from a matrix model. Nevertheless, we introduce what we call the partition function, in analogy with the Hermitian matrix model case [25, 31], through the following formula:

$$
\begin{equation*}
\mathcal{Z}_{n}:=\int_{\varkappa \Gamma} \mathrm{d} x_{1} \cdots \int_{\varkappa \Gamma} \mathrm{d} x_{n} \Delta(\underline{x})^{2} \mathrm{e}^{-\sum_{j=1}^{n} V\left(x_{j}\right)}=n!\Delta_{n}(\varkappa, V) \quad \Delta(\underline{x}):=\prod_{i<j}\left(x_{i}-x_{j}\right) . \tag{2.8}
\end{equation*}
$$

It is well known that \mathcal{Z}_{n} is proportional to the product of all normalization factors for the monic orthogonal polynomials in definition 2.1

$$
\begin{equation*}
\mathcal{Z}_{n}=n!\prod_{j=0}^{n-1} h_{j} \tag{2.9}
\end{equation*}
$$

Instead of the p_{n}, it is convenient to introduce the following quasi-polynomial functions:

$$
\begin{equation*}
\psi_{n}(x)=\frac{1}{\sqrt{h_{n}}} p_{n}(x) \mathrm{e}^{-\frac{1}{2} V(x)} \tag{2.10}
\end{equation*}
$$

which are orthonormal, in the sense that

$$
\begin{equation*}
\int_{\varkappa \Gamma} \mathrm{d} x \psi_{n}(x) \psi_{m}(x)=\delta_{n m} . \tag{2.11}
\end{equation*}
$$

These (quasi-)polynomials satisfy a three-term recursion relation [31]

$$
\begin{equation*}
x \psi_{n}(x)=\sum_{m=0}^{\infty} Q_{n m} \psi_{m}=\gamma_{n+1} \psi_{n+1}+\beta_{n} \psi_{n}+\gamma_{n} \psi_{n-1} \tag{2.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{n}=Q_{n, n-1}=\sqrt{\frac{h_{n}}{h_{n-1}}} \neq 0 \quad \forall n \in \mathbb{N} \quad \text { and } \quad \beta_{n}=Q_{n n} \tag{2.13}
\end{equation*}
$$

The semi-infinite matrix Q is symmetric ($Q_{n m}=Q_{m n}$), and has its nonzero entries along a diagonal band of width 3 ($Q_{m n}=0$ if $|m-n|>1$); i.e., it is a symmetric Jacobi matrix:

$$
Q=\left(\begin{array}{ccccc}
\beta_{0} & \gamma_{1} & 0 & \ldots & \ldots \tag{2.14}\\
\gamma_{1} & \beta_{1} & \gamma_{2} & 0 & \\
0 & \gamma_{2} & \beta_{2} & \gamma_{3} & \\
\vdots & 0 & \ddots & \ddots & \ddots
\end{array}\right)
$$

These recursion relations may equivalently be expressed as a two-component vector recursion

$$
\left[\begin{array}{c}
\psi_{n}(x) \tag{2.15}\\
\psi_{n+1}(x)
\end{array}\right]=R_{n}(x)\left[\begin{array}{c}
\psi_{n-1}(x) \\
\psi_{n}(x)
\end{array}\right]
$$

where

$$
R_{n}(x):=\left[\begin{array}{cc}
0 & 1 \tag{2.16}\\
-\frac{\gamma_{n}}{\gamma_{n+1}} & \frac{x-\beta_{n}}{\gamma_{n+1}}
\end{array}\right] .
$$

We can also express the derivatives of the ψ_{n} in the basis $\left\{\psi_{m}\right\}_{m=0 \ldots \infty}$:

$$
\begin{equation*}
\psi_{n}^{\prime}(x)=\sum_{m=0}^{\infty} P_{n m} \psi_{m}(x) \tag{2.17}
\end{equation*}
$$

where P has non-zero entries in a band of width $2 d+1$ centred on the principal diagonal. An integration by parts using equation (2.11) shows that the semi-infinite matrix P is antisymmetric. From

$$
\begin{equation*}
p_{n}^{\prime}=n p_{n-1}+\mathcal{O}\left(x^{n-2}\right) \tag{2.18}
\end{equation*}
$$

one obtains

$$
\begin{align*}
& P_{n m}+\frac{1}{2}\left(V^{\prime}(Q)\right)_{n m}=0 \quad \text { if } \quad m \geqslant n \tag{2.19a}\\
& P_{n, n-1}+\frac{1}{2}\left(V^{\prime}(Q)\right)_{n, n-1}=\frac{n}{\gamma_{n}} \tag{2.19b}
\end{align*}
$$

and hence

$$
\begin{equation*}
P=-\frac{1}{2}\left(V^{\prime}(Q)_{+}-V^{\prime}(Q)_{-}\right) \tag{2.20}
\end{equation*}
$$

where for any semi-infinite matrix A, A_{+}(resp. A_{-}) denotes the upper (resp. lower) triangular part of A. Equation (2.20) also implies the following equations, referred to sometimes as 'string equations' [10-13, 21]:

$$
\begin{equation*}
[Q, P]=\mathbf{1} \quad 0=V^{\prime}(Q)_{n n} \quad \frac{n}{\gamma_{n}}=V^{\prime}(Q)_{n, n-1} \tag{2.21}
\end{equation*}
$$

2.1. Differential system

It follows from (2.20) that the sum in (2.17) contains only a finite number of terms and can be written as

$$
\begin{equation*}
\psi_{n}^{\prime}(x)=-\frac{1}{2} \sum_{k=1}^{d}\left(V^{\prime}(Q)_{n, n+k} \psi_{n+k}-V^{\prime}(Q)_{n, n-k} \psi_{n-k}\right) \tag{2.22}
\end{equation*}
$$

Using equation (2.12) recursively for any $0<k \leqslant d$ we can write ψ_{n+k} and ψ_{n-1-k} as a unique linear combination of ψ_{n} and ψ_{n-1} with coefficients that are polynomials in x of degree $\leqslant k$. Equation (2.22) can thus be rewritten as a 2×2 differential system:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[\begin{array}{c}
\psi_{n-1}(x) \tag{2.23}\\
\psi_{n}(x)
\end{array}\right]=\mathcal{D}_{n}(x)\left[\begin{array}{c}
\psi_{n-1}(x) \\
\psi_{n}(x)
\end{array}\right] \quad n \geqslant 1
$$

where $\mathcal{D}_{n}(x)$ is a 2×2 matrix with polynomial coefficients of degree at most $d=\operatorname{deg} V^{\prime}$. In fact, we can choose the sequence of \mathcal{D}_{n} to satisfy the recursive gauge transformation relations

$$
\begin{equation*}
\mathcal{D}_{n+1}=R_{n} \mathcal{D}_{n} R_{n}^{-1}+\partial_{x} R_{n} R_{n}^{-1} \tag{2.24}
\end{equation*}
$$

(See also [5] for similar statements for the case of two-matrix models.) This relation determines the sequence of \mathcal{D}_{n} uniquely $[4,8,14,19-21]$. It follows in particular that these transformations preserve the (generalized) monodromy of the linear systems (2.23) for all n.

Theorem 2.1. The matrix $\mathcal{D}_{n}(x)$ is given by the formula

$$
\begin{align*}
\mathcal{D}_{n}(x) & =\frac{1}{2} V^{\prime}(x)\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]+\left[\begin{array}{ll}
\left(\frac{V^{\prime}(Q)-V^{\prime}(x)}{Q-x}\right)_{n-1, n-1} & \left(\frac{V^{\prime}(Q)-V^{\prime}(x)}{Q-x}\right)_{n-1, n} \\
\left(\frac{V^{\prime}(Q)-V^{\prime}(x)}{Q-x}\right)_{n, n-1} & \left(\frac{V^{\prime}(Q)-V^{\prime}(x)}{Q-x}\right)_{n n}
\end{array}\right]\left[\begin{array}{cc}
0 & -\gamma_{n} \\
\gamma_{n} & 0
\end{array}\right] \tag{2.25a}\\
& =\frac{1}{2} V^{\prime}(x)\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]+\gamma_{n}\left[\begin{array}{cc}
\left(\frac{V^{\prime}(Q)-V^{\prime}(x)}{Q-x}\right)_{n-1, n} & -\left(\frac{V^{\prime}(Q)-V^{\prime}(x)}{Q-x}\right)_{n-1, n-1} \\
\left(\frac{V^{\prime}(Q)-V^{\prime}(x)}{Q-x}\right)_{n n} & -\left(\frac{V^{\prime}(Q)-V^{\prime}(x)}{Q-x}\right)_{n, n-1}
\end{array}\right] . \tag{2.25b}
\end{align*}
$$

Proofs of this result may be found in $[4,8,19]$ and earlier in [21] for the case of even potentials. In appendix A, we give an alternative proof which is based upon the deformation formulae obtained in theorem 2.2.

Remark 2.1. The matrix $\gamma_{n}\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ appearing in the first line of equation (2.25b) arises naturally in the Christoffel-Darboux formula written here for the quasi-polynomials

$$
\begin{gather*}
\left(x-x^{\prime}\right) \sum_{j=0}^{n-1} \psi_{j}(x) \psi_{j}\left(x^{\prime}\right)=\gamma_{n}\left(\psi_{n}(x) \psi_{n-1}\left(x^{\prime}\right)-\psi_{n-1}(x) \psi_{n}\left(x^{\prime}\right)\right) \\
=\gamma_{n}\left[\psi_{n-1}(x), \psi_{n}(x)\right]\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
\psi_{n-1}\left(x^{\prime}\right) \\
\psi_{n}\left(x^{\prime}\right)
\end{array}\right] \tag{2.26}
\end{gather*}
$$

Equation (2.24) is the starting point that allows us to explicitly compute the spectral curve of the matrix $\mathcal{D}_{n}(x)$ in terms of the deformation parameters $\left\{u_{K}\right\}_{K=1 \ldots d}$ and the partition function \mathcal{Z}_{n}.

In addition to equation (2.23) we may consider the effect of deformations of the $\left\{u_{K}\right\}$ parameters on the orthogonal polynomials. It is well known that these give rise to isospectral deformations of the Jacobi matrix Q (Toda hierarchy equations [15, 27])

$$
\begin{align*}
& \frac{\partial}{\partial u_{K}} Q=\left[U_{K}, Q\right] \tag{2.27a}\\
& \frac{\partial}{\partial u_{K}} \psi_{n}(x)=\sum_{m}\left(U_{K}\right)_{n m} \psi_{m}(x) \tag{2.27b}\\
& U_{K}:=-\frac{1}{K}\left(Q^{K}{ }_{+}-Q^{K}{ }_{-}\right) . \tag{2.27c}
\end{align*}
$$

Combining the recursion relations (2.12) with equations (2.27a)-(2.27c) one obtains deformation equations for the successive pairs of orthogonal quasi-polynomials

$$
\frac{\partial}{\partial u_{K}}\left[\begin{array}{c}
\psi_{n}(x) \tag{2.28}\\
\psi_{n+1}(x)
\end{array}\right]=\mathcal{U}_{K, n}(x)\left[\begin{array}{c}
\psi_{n}(x) \\
\psi_{n+1}(x)
\end{array}\right] .
$$

The matrices $\mathcal{U}_{K, n}(x)$ can be explicitly computed and chosen to have polynomial entries of degree $\leqslant K$ as given in the following theorem, whose proof is given in the appendix. (Similar
formulae for the case of even potentials were given in [21]. The main simplification in that case is that the coefficients β_{n} vanish for all n.)

Theorem 2.2. The expression for $\mathcal{U}_{K, n}(x)$ may be taken as

$$
\begin{align*}
\mathcal{U}_{K, n}(x)=\frac{1}{2 K} & {\left[\begin{array}{cc}
x^{K}-Q_{n-1, n-1}^{K} & 0 \\
0 & Q_{n n}^{K}-x^{K}
\end{array}\right] } \\
& +\frac{1}{K} \gamma_{n}\left[\begin{array}{cc}
\left(\frac{x^{K}-Q^{K}}{x-Q}\right)_{n, n-1} & -\left(\frac{x^{K}-Q^{K}}{x-Q}\right)_{n-1, n-1} \\
\left(\frac{x^{K}-Q^{K}}{x-Q}\right)_{n n} & -\left(\frac{x^{K}-Q^{K}}{x-Q}\right)_{n, n-1}
\end{array}\right] . \tag{2.29}
\end{align*}
$$

Remark 2.2. It follows as a corollary to theorem 2.2 that

$$
\begin{equation*}
\operatorname{Tr} \mathcal{U}_{K, n}(x)=\frac{\partial}{\partial u_{K}} \ln \gamma_{n} \tag{2.30}
\end{equation*}
$$

It is important to note that equations (2.15), (2.23) and (2.28) do not just hold for the sequence $\left\{\psi_{n}\right\}$ of orthogonal quasi-polynomials but define an overdetermined system of differential-difference-deformation equations that are actually compatible in the Frobenius sense. Hence there exists, for all n, a basis of simultaneous solutions of these equations. This system of solutions can be written explicitly by adding to the ψ_{n} a solution of the second type as follows:

$$
\begin{align*}
& \Psi_{n}(x)=\left[\begin{array}{cc}
\psi_{n-1}(x) & \widetilde{\psi}_{n-1}(x) \\
\psi_{n}(x) & \widetilde{\psi}_{n}(x)
\end{array}\right] \tag{2.31a}\\
& \widetilde{\psi}_{n}(x)=\mathrm{e}^{\frac{1}{2} V(x)} \int_{\varkappa \Gamma} \mathrm{d} x \frac{\mathrm{e}^{-\frac{1}{2} V(z)} \psi_{n}(z)}{x-z} . \tag{2.31b}
\end{align*}
$$

It is an easy exercise to show that these $\widetilde{\psi}_{n}$ satisfy the same recursion relations as the ψ_{n} for $n>d$ and hence satisfy the same ODE (2.23). It is also straightforward to verify that they satisfy the deformation equations (2.28). The fact that these equations are compatible implies that the generalized monodromy data (i.e. the Stokes matrices) for the operator $\partial_{x}-\mathcal{D}_{n}(x)$ are independent of the deformation parameters $\left\{u_{K}\right\}$ and the integer n.

We now turn to the main object of this paper: to relate the partition function (2.8) to the isomonodromic tau function (whose definition is given below). The first step is to connect the spectral curve of the matrix $\mathcal{D}_{n}(x)$ with the partition function.

Theorem 2.3. The spectral curve is given by

$$
\begin{align*}
0 & =\operatorname{det}\left(y \mathbf{1}-\mathcal{D}_{n}(x)\right)=y^{2}-\frac{1}{2} \operatorname{Tr}\left(\mathcal{D}_{n}^{2}(x)\right)=y^{2}-\frac{1}{4}\left(V^{\prime}(x)\right)^{2}+\sum_{j=0}^{n-1}\left(\frac{V^{\prime}(Q)-V^{\prime}(x)}{Q-x}\right)_{j j} \tag{2.32a}\\
& =y^{2}-\frac{1}{4}\left(V^{\prime}(x)\right)^{2}+n \sum_{J=1}^{d} u_{J+1} x^{J-1}+\sum_{K=0}^{d-2} x^{K} \sum_{J=1}^{d-K-1} u_{J+K+2} J \frac{\partial}{\partial u_{J}} \ln \left(\mathcal{Z}_{n}\right) . \tag{2.32b}
\end{align*}
$$

Before proving this result, we note that the RHS contains matrix elements of Q with all indices down to $n=0$ while, as it stands, formula ($2.25 b$) for $\mathcal{D}_{n}(x)$ contains only matrix elements of Q with indices 'around' n, i.e., at distances less than $d+1$ from $Q_{n n}$.

Proof of theorem 2.3. First, note that $\mathcal{D}_{n}(x)$ is traceless (by formula (2.25b)). Using equation (2.24) and the cyclicity of traces of products one finds that
$\operatorname{Tr}\left(\mathcal{D}_{n+1}(x)^{2}\right)=\operatorname{Tr}\left(\mathcal{D}_{n}(x)^{2}\right)+2 \operatorname{Tr}\left(\mathcal{D}_{n}(x) R_{n}{ }^{-1}(x) R_{n}^{\prime}(x)\right)+\operatorname{Tr}\left(\left(R_{n}^{\prime}(x) R_{n}{ }^{-1}(x)\right)^{2}\right)$.
Now note that

$$
R_{n}^{\prime}(x) R_{n}^{-1}(x)=\left[\begin{array}{cc}
0 & 0 \tag{2.34}\\
\frac{1}{\gamma_{n}} & 0
\end{array}\right] \quad R_{n}^{-1}(x) R_{n}^{\prime}(x)=\left[\begin{array}{cc}
0 & -\frac{1}{\gamma_{n}} \\
0 & 0
\end{array}\right]
$$

so the third trace term vanishes and the second one gives

$$
\begin{equation*}
\operatorname{Tr}\left(\mathcal{D}_{n+1}(x)^{2}\right)=\operatorname{Tr}\left(\mathcal{D}_{n}(x)^{2}\right)-2\left(\frac{V^{\prime}(Q)-V^{\prime}(x)}{Q-x}\right)_{n n} \tag{2.35}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\operatorname{Tr}\left(\mathcal{D}_{n}(x)^{2}\right)=\operatorname{Tr}\left(\mathcal{D}_{1}(x)^{2}\right)-2 \sum_{j=1}^{n-1}\left(\frac{V^{\prime}(Q)-V^{\prime}(x)}{Q-x}\right)_{j j} \tag{2.36}
\end{equation*}
$$

Note that \mathcal{D}_{0} is not defined. We therefore need to compute the trace of the square of the first matrix \mathcal{D}_{1}. To this end we introduce the notation

$$
\begin{equation*}
W(x):=\frac{V^{\prime}(Q)-V^{\prime}(x)}{Q-x} . \tag{2.37}
\end{equation*}
$$

Now use the string equation (2.21) to compute
$-V^{\prime}(x)=\left[V^{\prime}(Q)-V^{\prime}(x)\right]_{00}=[W(x)(Q-x)]_{00}=\left(\beta_{0}-x\right) W_{00}(x)+\gamma_{1} W_{10}(x)$
$\frac{1}{\gamma_{1}}=\left[V^{\prime}(Q)-V^{\prime}(x)\right]_{10}=[W(x)(Q-x)]_{10}=\gamma_{1} W_{11}(x)+\left(\beta_{0}-x\right) W_{10}(x)$.
Multiplying equation (2.38a) by $\gamma_{1} W_{10}$, equation (2.38b) by $\gamma_{1} W_{00}$ and subtracting, we obtain (since the diagonal elements of $V^{\prime}(Q)$ vanish by equation (2.21))

$$
\begin{equation*}
W_{00}(x)=\gamma_{1}^{2} W_{11}(x) W_{00}(x)-\gamma_{1} W_{10}(x)\left(V^{\prime}(x)+\gamma_{1} W_{10}(x)\right) . \tag{2.39}
\end{equation*}
$$

Computing the trace of the square of $\mathcal{D}_{1}(x)$, and using equation (2.39) we obtain

$$
\begin{equation*}
\operatorname{Tr}\left(\mathcal{D}_{1}(x)^{2}\right)=\frac{1}{2} V^{\prime}(x)^{2}-2 W_{00}(x) \tag{2.40}
\end{equation*}
$$

Therefore, the full formula for the trace of the square is

$$
\begin{equation*}
\operatorname{Tr}\left(\mathcal{D}_{n}(x)^{2}\right)=\frac{1}{2} V^{\prime}(x)^{2}-2 \sum_{j=0}^{n-1}\left(\frac{V^{\prime}(Q)-V^{\prime}(x)}{Q-x}\right)_{j j} . \tag{2.41}
\end{equation*}
$$

Remark 2.3. Note that, had we interpreted formula (2.25b) for $n=0$ to mean that $\gamma_{0}=0$, we would have obtained exactly the same result.

We now expand the polynomial

$$
\begin{equation*}
\frac{V^{\prime}(Q)-V^{\prime}(x)}{Q-x}=\sum_{J=1}^{d} u_{J+1} x^{J-1} \mathbf{1}+\sum_{K=0}^{d-2} x^{K} \sum_{J=1}^{d-K-1} u_{J+K+2} Q^{J} \tag{2.42}
\end{equation*}
$$

and use the fact (proved in appendix A, equation (A.5)) that

$$
\begin{equation*}
\sum_{j=0}^{n-1}\left(Q^{K}\right)_{j j}=K \partial_{u_{K}} \ln \left(\mathcal{Z}_{n}\right) \tag{2.43}
\end{equation*}
$$

to complete the proof of the theorem.

Theorem 2.3 relates the spectral curve of the matrix $\mathcal{D}_{n}(x)$ to the partition function \mathcal{Z}_{n}. The latter is known to be a τ-function for the KP hierarchy. (A short proof of this fact is given in appendix B together with an interpretation of \mathcal{Z}_{n} as a Fredholm determinant.) On the other hand, a linear system of the form (2.23) with compatible deformation equations (2.15), (2.28) allows one to define an isomonodromic tau function [22]. We recall here briefly, in a way adapted to the case at hand, how to define such a tau-function.

The ODE

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x} \Psi(x)=\mathcal{D}_{n}(x) \Psi(x) \tag{2.44}
\end{equation*}
$$

has just one irregular singularity at $x=\infty$ and hence has Stokes sectors, which are just those defined in equation (2.5). Since the leading term of the singularity in $\mathcal{D}_{n}(x)$ is semisimple with distinct eigenvalues

$$
\begin{equation*}
\mathcal{D}_{n}(x) \simeq \frac{u_{d+1}}{2} x^{d} \sigma_{3}+\mathcal{O}\left(x^{d-1}\right) \tag{2.45}
\end{equation*}
$$

we can write in each Stokes sector \mathcal{S}_{k} a formal asymptotic solution of the form

$$
\begin{align*}
& \Psi_{n}(x) \simeq C_{n} Y_{n}(x) \mathrm{e}^{T_{n}(x)} \tag{2.46a}\\
& Y_{n}(x):=\mathbf{1}+\sum_{j=1}^{\infty} Y_{j, n} x^{-j} \tag{2.46b}\\
& T_{n}(x)=\sum_{K=1}^{d+1} \frac{1}{K} T_{K} x^{K}+T_{-1} \ln (x) \tag{2.46c}
\end{align*}
$$

where the T_{K} are all diagonal and (in our case) traceless. In the present case, we easily find $T_{n}(x)$ from the tracelessness and the exponential part of the asymptotic form of the fundamental system defined in equation $(2.31 b)$ (cf $[6,7]$ for similar formulae in the case of quartic even potentials). That is,

$$
\begin{align*}
& T_{K}=\frac{1}{2} \operatorname{diag}\left(u_{K},-u_{K}\right)=\frac{u_{K}}{2} \sigma_{3} \quad K>0 \quad T_{-1}=n \sigma_{3} \tag{2.47a}\\
& T_{n}(x)=-\left(\frac{1}{2} V(x)-n \ln (x)\right) \sigma_{3} . \tag{2.47b}
\end{align*}
$$

The Stokes matrices relate the basis of solutions to these asymptotic forms in contiguous sectors. The isomonodromic tau function is then defined by the deformation equation. (See the introduction to [22] for the general context and motivations behind the theory of isomonodromic tau functions.)

$$
\begin{align*}
\mathrm{d} \ln \left(\tau_{I M, n}\right) & :=\operatorname{res}_{x=\infty} \operatorname{Tr}\left(Y_{n}^{-1}(x) Y_{n}^{\prime}(x) \mathrm{d} T(x)\right) \\
& =\sum_{K=1}^{d+1} \frac{1}{2 K} \operatorname{res}_{x=\infty}^{\operatorname{Tr}} \operatorname{Tr}\left(Y_{n}^{-1}(x) Y_{n}^{\prime}(x) \sigma_{3} x^{K-1}\right) \mathrm{d} u_{K} \tag{2.48}
\end{align*}
$$

where

$$
\begin{equation*}
\mathrm{d}:=\sum_{K=1}^{d+1} \mathrm{~d} u_{K} \frac{\partial}{\partial u_{K}} . \tag{2.49}
\end{equation*}
$$

We now state and prove the main theorem relating $\tau_{I M, n}(\varkappa, V)$ and $\mathcal{Z}_{n}(\varkappa, V)$.

Theorem 2.4. The partition function $\mathcal{Z}_{n}(V)$ is related to the isomonodromic tau function by the formula

$$
\begin{equation*}
\tau_{I M, n}(\varkappa, V)=\mathcal{Z}_{n}(\varkappa, V) u_{d+1}^{\frac{n^{2}}{d+1}} \tag{2.50}
\end{equation*}
$$

up to a multiplicative factor that depends only on \varkappa.
Proof. We will prove that

$$
\mathrm{d} \ln \mathcal{Z}_{n}=\mathrm{d} \ln \tau_{I M, n}-\frac{n^{2}}{(d+1) u_{d+1}} \mathrm{~d} u_{d+1}
$$

We start by observing that (suppressing the dependence on x and n for brevity and denoting the derivative with respect to x by a prime)

$$
\begin{align*}
& \mathcal{D}_{n}=\Psi^{\prime} \Psi^{-1}=C Y^{\prime} Y^{-1} C^{-1}+C Y T^{\prime} Y^{-1} C^{-1} \tag{2.51a}\\
& \operatorname{Tr}\left(\mathcal{D}_{n}^{2}\right)=\operatorname{Tr}\left(\left(Y^{\prime} Y^{-1}\right)^{2}\right)+\operatorname{Tr}\left(T^{\prime 2}\right)+2 \operatorname{Tr}\left(Y^{-1} Y^{\prime} T^{\prime}\right) \tag{2.51b}
\end{align*}
$$

Consider the coefficient of x^{K} in $\operatorname{Tr}\left(\mathcal{D}_{n}{ }^{2}\right)$, which is

$$
\begin{align*}
& \frac{1}{2} \sum_{j=0}^{K} u_{j+1} u_{k+1-j}-2 n u_{K+2}-2 \sum_{J=1}^{d-K-1} u_{J+K+2} J \frac{\partial}{\partial u_{J}} \ln \left(\mathcal{Z}_{n}\right) \stackrel{\text { theorem }}{=}{ }^{2.3}-\operatorname{res}_{x=\infty} x^{-K-1} \operatorname{Tr}\left(\mathcal{D}_{n}{ }^{2}\right) \\
&= \overbrace{-\operatorname{res}_{x=\infty} x^{-K-1} \operatorname{Tr}\left(\left(Y^{\prime} Y^{-1}\right)^{2}\right)}^{=0 \text { because } Y^{\prime} Y^{-1}=\mathcal{O}\left(x^{-2}\right)}-2 \underset{x=\infty}{\text { res }} x^{-K-1}\left(\frac{1}{2} V^{\prime}(x)-\frac{n}{x}\right)^{2} \\
&-2 \text { res } x_{x=\infty}^{-K-1} \operatorname{Tr}\left(Y^{-1} Y^{\prime} T^{\prime}\right)=\frac{1}{2} \sum_{J=0}^{K} u_{J+1} u_{K+1-J}-2 n u_{K+2} \\
&-\sum_{J=1}^{d+1} \operatorname{res}_{x=\infty} u_{J} \operatorname{Tr}\left(Y^{-1} Y^{\prime} \sigma_{3} x^{J-K-2}\right)=\frac{1}{2} \sum_{J=0}^{K} u_{J+1} u_{K+1-J}-2 n u_{K+2} \\
&-2 \sum_{J=1}^{d-K-1} u_{J+K+2} J \frac{\partial}{\partial u_{J}} \ln \left(\tau_{I M, n}\right) . \tag{2.52}
\end{align*}
$$

We therefore have the relations

$$
\begin{equation*}
\sum_{J=1}^{d-K-1} u_{J+K+2} J \frac{\partial}{\partial u_{J}} \ln \left(\mathcal{Z}_{n}\right) \equiv \sum_{J=1}^{d-K-1} u_{J+K+2} J \frac{\partial}{\partial u_{J}} \ln \left(\tau_{I M, n}\right) \quad K=0, \ldots, d-2 \tag{2.53}
\end{equation*}
$$

The vector fields appearing in equation (2.53) are just representations of the negative Virasoro generators on the space of functions of the deformation parameters $\left\{u_{K}\right\}$,

$$
\begin{equation*}
\mathbb{V}_{-K}=\sum_{J=1}^{d+1-K} u_{J+K} J \frac{\partial}{\partial u_{J}} \tag{2.54}
\end{equation*}
$$

Equation (2.53) can therefore be rewritten as

$$
\begin{equation*}
\mathbb{V}_{-K} \ln \left(\mathcal{Z}_{n}(V)\right)=\mathbb{V}_{-K} \ln \left(\tau_{I M, n}(V)\right) \quad 2 \leqslant K \leqslant \cdots \leqslant d \tag{2.55}
\end{equation*}
$$

Since the vector fields $\mathbb{V}_{0}, \ldots, \mathbb{V}_{-d}$ are linearly independent

$$
\begin{equation*}
\mathbb{V}_{0} \wedge \ldots \wedge \mathbb{V}_{-d}=(d+1)!\left(u_{d+1}\right)^{d+1} \partial_{u_{1}} \wedge \ldots \wedge \partial_{u_{d+1}} \tag{2.56}
\end{equation*}
$$

and $\mathcal{Z}_{n}(V), \tau_{I M, n}$ depend on the $d+1$ parameters u_{1}, \ldots, u_{d+1}, we may relate them up to a multiplicative constant if we determine the effect of the two remaining operators. Now \mathbb{V}_{0} and \mathbb{V}_{-1} generate dilations and translations respectively

$$
\begin{equation*}
\mathbb{V}_{0} V(x)=x \partial_{x} V(x) \quad \mathbb{V}_{-1} V(x)=\partial_{x} V(x) \tag{2.57}
\end{equation*}
$$

Moreover, it is clear from its definition (equation (2.8)) that the partition function must satisfy

$$
\begin{equation*}
\mathbb{V}_{-1} \mathcal{Z}_{n}=0 \quad \mathbb{V}_{0} \mathcal{Z}_{n}=-n^{2} \mathcal{Z}_{n} \tag{2.58}
\end{equation*}
$$

On the other hand, the definition (2.48) of the isomonodromic tau function implies that it is invariant under translations and dilations of x so that

$$
\begin{equation*}
\mathbb{V}_{0} \tau_{I M, n}=\mathbb{V}_{-1} \tau_{I M, n}=0 \tag{2.59}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\ln \left(\mathcal{Z}_{n}\right)=\ln \left(\tau_{I M, n}\right)-\frac{n^{2}}{d+1} \ln \left(u_{d+1}\right)+\text { const } \tag{2.60}
\end{equation*}
$$

which gives the proof of the theorem up to a constant multiplicative factor.
Remark 2.4. Theorem 2.4 was proved in the special case in which $V(x)=g_{1} x^{2}+g_{2} x^{4}$ in [20].

Remark 2.5. For any fixed n, the set of \varkappa for which orthogonal polynomials exist up to degree n is an open set because it is the complement of the vanishing locus of n homogeneous polynomials

$$
\begin{equation*}
\Delta_{m}(\varkappa, V) \neq 0 \quad \forall m \leqslant n \tag{2.61}
\end{equation*}
$$

Thus we could also study the deformations with respect to parameters \varkappa. However, these are not isomonodromic deformations because they change the data of the Riemann-Hilbert problem that are naturally associated with equation (2.44). A similar approach in the case of even potentials can be found in [21].

Acknowledgments

The authors would like to thank A Its and A Orlov for helpful remarks and for drawing attention to related earlier works. This work is supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds FCAR du Québec.

Appendix A

In this appendix we give proofs of theorems 2.1 and 2.2. First, we consider the deformation equations, which determine the variation of the orthogonal polynomials when the potential $V(x)$ is varied.

Let us first expand the variation of $\psi_{n}(x)$ with respect to u_{K} in the basis $\left\{\psi_{n}\right\}$:

$$
\begin{equation*}
\frac{\partial}{\partial u_{K}} \psi_{n}(x)=\sum_{m=0}^{\infty}\left(U_{K}\right)_{n m} \psi_{m}(x) \tag{A.1}
\end{equation*}
$$

The semi-infinite matrix U_{K} is antisymmetric (as seen from differentiating equation (2.11)):

$$
\begin{equation*}
\left(U_{K}\right)_{n m}=-\left(U_{K}\right)_{m n} \tag{A.2}
\end{equation*}
$$

Taking the derivative of equation (2.10) with respect to u_{K} and using $\partial p_{n} / \partial u_{K}=O\left(x^{n-1}\right)$ and equation (A.2) we obtain

$$
\begin{equation*}
U_{K}=-\frac{1}{2 K}\left(\left(Q^{K}\right)_{+}-\left(Q^{K}\right)_{-}\right) \tag{A.3}
\end{equation*}
$$

In particular, the semi-infinite matrix U_{K} is of finite band size:

$$
\begin{equation*}
\left(U_{K}\right)_{n m}=0 \quad \text { if } \quad|n-m|>K \tag{A.4}
\end{equation*}
$$

and therefore equation (A.1) contains only a finite sum. The diagonal part yields (from equation (2.10))

$$
\begin{equation*}
\frac{1}{K}\left(Q^{K}\right)_{n n}=\frac{\partial \ln h_{n}}{\partial u_{K}} \quad \Rightarrow \quad \frac{\partial}{\partial u_{K}} \ln \mathcal{Z}_{n}=\frac{1}{K} \sum_{i=0}^{n-1}\left(Q^{K}\right)_{i i} \tag{A.5}
\end{equation*}
$$

The semi-infinite matrix U_{K} can be used to form a differential system in the same way as for the ∂_{x} equations, by expressing any ψ_{m} in terms of ψ_{n} and ψ_{n-1} by means of (2.12). We then obtain an equation

$$
\begin{equation*}
\frac{\partial}{\partial u_{K}}\binom{\psi_{n-1}(x)}{\psi_{n}(x)}=\mathcal{U}_{K, n}(x)\binom{\psi_{n-1}(x)}{\psi_{n}(x)} \tag{A.6}
\end{equation*}
$$

where $\mathcal{U}_{K, n}(x)$ is a 2×2 matrix with polynomial coefficients of degree $\leqslant K$. In particular, it is easy to compute $\mathcal{U}_{1, n}(x)$:

$$
\mathcal{U}_{1, n}(x)=-\frac{1}{2}\left(\begin{array}{cc}
\beta_{n-1}-x & 2 \gamma_{n} \tag{A.7}\\
-2 \gamma_{n} & x-\beta_{n}
\end{array}\right) .
$$

The general form of the matrices $\mathcal{U}_{K, n}$ is given in theorem 2.2 which we now prove.
Proof of theorem 2.2. For any semi-infinite matrix A, let A_{l} denote the l th diagonal above (or below, if $l<0$) the main diagonal. Recall that A_{+}(resp. A_{-}) denotes the strictly upper (resp. strictly lower) triangular part of A.

Since the matrix Q has only three non-vanishing diagonals, we have

$$
\begin{align*}
\left(Q^{K+1}\right)_{+} & =\left(Q^{K} Q\right)_{+}=\left(Q^{K} Q_{1}\right)_{+}+\left(Q^{K} Q_{0}\right)_{+}+\left(Q^{K} Q_{-1}\right)_{+} \\
& =\left(\left(Q^{K}\right)_{+}+\left(Q^{K}\right)_{0}\right) Q_{1}+\left(Q^{K}\right)_{+} Q_{0}+\left(\left(Q^{K}\right)_{+}-\left(Q^{K}\right)_{1}\right) Q_{-1} \\
& =\left(Q^{K}\right)_{+} Q+\left(Q^{K}\right)_{0} Q_{1}-\left(Q^{K}\right)_{1} Q_{-1} . \tag{A.8}
\end{align*}
$$

This, combined with a similar calculation for $\left(Q^{K+1}\right)_{-}$, implies

$$
\begin{equation*}
Q_{+}^{K+1}-Q_{-}^{K+1}=\left(Q_{+}^{K}-Q_{-}^{K}\right) Q+\left(Q_{0}^{K}+Q_{-1}^{K}\right) Q_{1}-\left(Q_{1}^{K}+Q_{0}^{K}\right) Q_{-1} \tag{A.9}
\end{equation*}
$$

which, componentwise, reads (using equation (A.3)):

$$
\begin{gather*}
-2(K+1) \frac{\partial}{\partial u_{K+1}} \psi_{n}(x)=-2 K \frac{\partial}{\partial u_{K}} x \psi_{n}(x)+\left(Q^{K}\right)_{n n}\left(\gamma_{n+1} \psi_{n+1}-\gamma_{n} \psi_{n-1}\right) \\
+\left(\gamma_{n}\left(Q^{K}\right)_{n, n-1}-\gamma_{n+1}\left(Q^{K}\right)_{n, n+1}\right) \psi_{n} . \tag{A.10}
\end{gather*}
$$

Using equation (2.12)

$$
\begin{gather*}
-2(K+1) \frac{\partial}{\partial u_{K+1}} \psi_{n}(x)=-2 K \frac{\partial}{\partial u_{K}} x \psi_{n}(x)+\left(Q^{K}\right)_{n n}\left(\left(x-\beta_{n}\right) \psi_{n}-2 \gamma_{n} \psi_{n-1}\right) \\
\quad+\left(\gamma_{n}\left(Q^{K}\right)_{n, n-1}-\gamma_{n+1}\left(Q^{K}\right)_{n, n+1}\right) \psi_{n} \tag{A.11a}\\
-2(K+1) \frac{\partial}{\partial u_{K+1}} \psi_{n-1}(x)=-2 K \frac{\partial}{\partial u_{K}} x \psi_{n-1}(x)+\left(Q^{K}\right)_{n-1, n-1}\left(2 \gamma_{n} \psi_{n}\right. \\
\left.\quad-\left(x-\beta_{n-1}\right) \psi_{n-1}\right)+\left(\gamma_{n-1}\left(Q^{K}\right)_{n-1, n-2}-\gamma_{n}\left(Q^{K}\right)_{n, n-1}\right) \psi_{n-1} \tag{A.11b}
\end{gather*}
$$

which can be further simplified using

$$
\begin{align*}
& Q_{n n}^{K+1}=\gamma_{n+1} Q_{n, n+1}^{K}+\beta_{n} Q_{n n}^{K}+\gamma_{n} Q_{n, n-1}^{K} \tag{A.12a}\\
& Q_{n-1, n-1}^{K+1}=\gamma_{n-1} Q_{n-1, n-2}^{K}+\beta_{n-1} Q_{n-1, n-1}^{K}+\gamma_{n} Q_{n, n-1}^{K} \tag{A.12b}
\end{align*}
$$

We thus get a recursion formula for $\mathcal{U}_{K, n}(x)$:

$$
\begin{gather*}
-2(K+1) \mathcal{U}_{K+1, n}(x)+2 K x \mathcal{U}_{K, n}(x)=\left(\begin{array}{cc}
-\left(x Q^{K}-Q^{K+1}\right)_{n-1, n-1} & 0 \\
0 & \left(x Q^{K}-Q^{K+1}\right)_{n n}
\end{array}\right) \\
+2 \gamma_{n}\left(\begin{array}{cc}
-Q_{n-1, n}^{K} & Q_{n-1, n-1}^{K} \\
-Q_{n n}^{K} & Q_{n, n-1}^{K}
\end{array}\right) \tag{A.13}
\end{gather*}
$$

from which the result follows by induction on K and using equation (A.7).
As a corollary to theorem 2.2 we can complete the proof of theorem 2.1.
Proof of theorem 2.1. Since $V(x)$ is a polynomial of degree $d+1$, equation (2.20) implies that

$$
\begin{equation*}
P=\sum_{K=0}^{d} u_{K+1} K U_{K} \tag{A.14}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\mathcal{D}_{n}(x)=\sum_{K=1}^{d} u_{K+1} K \mathcal{U}_{K, n}(x) \tag{A.15}
\end{equation*}
$$

Using theorem 2.2 and equation (2.21), one immediately finds the expression (2.25b) for $\mathcal{D}_{n}(x)$.

Appendix B

We give here a simple proof of the fact that the partition function $\mathcal{Z}_{n}(V)$ is a KP tau function in the sense of $[29,30]$; that is, the determinant of a projection operator acting on elements of a suitably defined Grassmannian, evaluated along the orbits of an Abelian group. The interest in rederiving this well-known result is that the method used, which just involves a simple formal matrix calculation, naturally leads to a new interpretation of the partition function as the Fredholm determinant of a simple integral operator.

Let

$$
\begin{equation*}
\mathcal{H}=\mathcal{H}_{n}+\mathcal{H}_{+} \tag{B.1}
\end{equation*}
$$

where $\mathcal{H}_{n}=\operatorname{span}\left\{z^{j}\right\}_{0 \leqslant j \leqslant n-1}$ and \mathcal{H}_{+}is a suitably defined completion (whose details are irrelevant for this sort of formal computation) of the space $\operatorname{span}\left\{z^{j}\right\}_{j \geqslant n}$, with $z \in \mathbb{C}$ viewed as a variable defined along our cycle $\chi \Gamma$. (Note that we could have included the negative powers $\left\{z^{j}\right\}_{j<0}$ in the definition of \mathcal{H}, but for the case at hand, these contribute nothing to the computation of the tau-function and it is simplest to suppress them from the start.) Denote by \widetilde{w}_{0} the $G l(\mathcal{H})$ element defined by

$$
\begin{array}{cccc}
\widetilde{w}_{0}: & \mathcal{H} & \longrightarrow & \mathcal{H} \\
\widetilde{w}_{0}: & \sum_{j \geqslant 0} a_{j} z^{j} & \mapsto & \sum_{j \geqslant 0} a_{j} p_{j}(z) \tag{B.2}
\end{array}
$$

where $\left\{p_{j}(z)\right\}$ are the monic orthogonal polynomials associated with the moment functional $\mathcal{L}_{\varkappa \Gamma}$ for an initial value of the parameters $\left\{u_{k}\right\}$. Within the natural basis $\left\{z^{j}\right\}_{j \in \mathbb{N}}$ the group element \widetilde{w}_{0} is represented by the upper triangular matrix

$$
\widetilde{W}_{0}:=\left[\begin{array}{c|c}
n & + \tag{B.3}\\
W_{n} & W_{n+} \\
\hline 0 & W_{+}
\end{array}\right] \frac{n}{+}
$$

whose j th column consists of the expansion coefficients in

$$
\begin{equation*}
p_{j}(z):=\sum_{k=0}^{j} W_{k j} z^{k} . \tag{B.4}
\end{equation*}
$$

(Note that the blocks W_{n}, W_{+}are upper triangular with diagonal elements all equal to 1.)
We consider the Grassmannian $G r_{+}(\mathcal{H})$ of subspaces of \mathcal{H} that are 'commensurable' with $\mathcal{H}_{+} \subset \mathcal{H}$ in the sense of [30], and the commuting flows induced on it by the action of the Abelian group

$$
\begin{equation*}
\Gamma^{+}:=\left\{\tilde{\gamma}(\mathbf{t})=\exp \left(\sum_{J \geqslant 1} \frac{1}{J} t_{J} z^{J}\right)\right\} \subset G l(\mathcal{H}) \tag{B.5}
\end{equation*}
$$

(where $\mathbf{t}=\left(t_{1}, t_{2}, \ldots\right)$), acting by multiplication:

$$
\begin{array}{ccc}
\Gamma^{+} \times \mathcal{H} & \longrightarrow & \mathcal{H} \\
(\tilde{\gamma}(\mathbf{t}), f) & \mapsto & \tilde{\gamma}(\mathbf{t}) f \tag{B.6}
\end{array}
$$

Within the standard basis, the flows on \mathcal{H} are represented by semi-infinite lower triangular matrices

$$
\gamma(\mathbf{t}):=\left[\begin{array}{c|c}
A & 0 \tag{B.7}\\
\hline B & C
\end{array}\right]
$$

where the diagonal blocks are again lower triangular with 1 along the diagonal. The initial element $w_{0} \in G r_{+}(\mathcal{H})$ is taken as

$$
\begin{equation*}
w_{0}:=\operatorname{span}\left\{p_{j}(z)\right\}_{j \geqslant n} . \tag{B.8}
\end{equation*}
$$

In homogeneous coordinates, relative to the standard basis, this is represented by the $(n+\infty) \times \infty$ rectangular matrix

$$
W_{0}:=\widetilde{W}_{0}\left[\begin{array}{c}
0 \tag{B.9}\\
\mathbf{1}_{+}
\end{array}\right] .
$$

The induced flow on $G r_{+}(\mathcal{H})$ takes w_{0} to the element with homogeneous coordinates

$$
\begin{equation*}
W(\mathbf{t})=\gamma(\mathbf{t}) W_{0} . \tag{B.10}
\end{equation*}
$$

The corresponding KP tau function $\tau_{W_{0}}(\mathbf{t})$ is given by the Plücker coordinate corresponding to the subspace

$$
\begin{equation*}
\tau_{W_{0}}(\mathbf{t})=\operatorname{det}\left(B W_{n+}+C W_{+}\right) . \tag{B.11}
\end{equation*}
$$

Since all diagonal blocks have unit determinants, this equals

$$
\begin{equation*}
\tau_{W_{0}}(\mathbf{t})=\operatorname{det}\left(\mathbf{1}_{\infty}+B W_{n+} W_{+}^{-1} C^{-1}\right)=\operatorname{det}\left(\mathbf{1}_{n}+W_{n+} W_{+}^{-1} C^{-1} B\right) \tag{B.12}
\end{equation*}
$$

where the second equality, expressing $\tau_{W_{0}}(\mathbf{t})$ as a finite $n \times n$ determinant, follows from the Weinstein-Aronszajn identity.

The partition function \mathcal{Z}_{n} in (2.8) is also expressible as an $n \times n$ determinant of the matrix of moments \mathfrak{M}

$$
\begin{equation*}
\mathfrak{M}_{i j}:=\mathcal{L}_{\varkappa \Gamma}\left(x^{i+j}\right) \tag{B.13}
\end{equation*}
$$

which in our notation may be expressed at the parameter values

$$
\begin{equation*}
u_{J}=u_{J}^{(0)}+t_{J} \quad J=1, \ldots, d+1 \tag{B.14}
\end{equation*}
$$

as

$$
\begin{equation*}
\mathfrak{M}=\mathfrak{M}_{0} \gamma^{-1}(\mathbf{t}) \tag{B.15}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbf{t}:=\left(t_{1}, t_{2}, \ldots, t_{d+1}, 0,0, \ldots\right) \\
& \mathfrak{M}_{0}=W_{0}^{t-1} H_{0} W_{0}^{-1} \tag{B.16b}
\end{align*}
$$

is the initial value of $\mathfrak{M}($ at $\mathbf{t}=0)$ and

$$
H_{0}:=\operatorname{diag}\left(h_{0}, h_{1}, \ldots\right)=\left[\begin{array}{cc}
H_{0, n} & 0 \tag{B.17}\\
0 & H_{0,+}
\end{array}\right]
$$

is the initial value of the matrix of normalization factors.
Let

$$
\begin{equation*}
\widehat{\imath}_{n}: \mathcal{H}_{n} \hookrightarrow \mathcal{H} \quad \widehat{\pi}_{n}: \mathcal{H} \rightarrow \mathcal{H}_{n} \tag{B.18}
\end{equation*}
$$

be the natural injection and projection represented by the matrices

$$
l_{n}:=\left[\begin{array}{c}
\mathbf{1}_{n} \tag{B.19}\\
0
\end{array}\right] \quad \pi_{n}:=\left[\begin{array}{ll}
\mathbf{1}_{n} & 0
\end{array}\right]
$$

Then, by equation (2.8)

$$
\begin{align*}
\frac{1}{n!} \mathcal{Z}_{n} & =\operatorname{det}\left(\pi_{n} \mathfrak{M} l_{n}\right)=\operatorname{det}\left(\pi_{n} W_{0}^{t-1} H_{0} W_{0}^{-1} \gamma^{-1} \iota_{n}\right) \\
& =\operatorname{det}\left(H_{0, n}\right) \operatorname{det}\left(\mathbf{1}_{n}+W_{n+} W_{+}^{-1} C^{-1} B\right) \tag{B.20b}
\end{align*}
$$

where the second line follows from the fact that

$$
\begin{equation*}
\operatorname{det}(A)=\operatorname{det}(C)=\operatorname{det}\left(W_{n}\right)=\operatorname{det}\left(W_{+}\right)=1 . \tag{B.21}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\tau_{W_{0}}(\mathbf{t})=\frac{\mathcal{Z}_{n}(\mathbf{t})}{\mathcal{Z}_{n}(0)} \tag{B.22}
\end{equation*}
$$

We may now use this calculation to deduce a representation of $\mathcal{Z}_{n}(\mathbf{t})$ as a Fredholm determinant. First note that from the definitions of the matrices A, B, C, W_{n+}, W_{+}, we may view these as representations of the operators

$$
\begin{array}{lcll}
\widehat{B}: & \mathcal{H}_{n} & \longrightarrow & \mathcal{H}_{+} \\
\widehat{B}: & \sum_{j=0}^{n-1} a_{j} z^{j} & \mapsto & \sum_{j=0}^{n-1} a_{j}\left(\widetilde{\gamma}(\mathbf{t}) z^{j}\right) \geqslant n \\
\widehat{C}: & \mathcal{H}_{+} & \longrightarrow & \mathcal{H}_{+} \\
\widehat{C}: & \sum_{j \geqslant n} a_{j} z^{j} & \mapsto & \sum_{j \geqslant n} a_{j} \widetilde{\gamma}(\mathbf{t}) z^{j} \\
\widehat{W}_{+}: & \mathcal{H}_{+} & \longrightarrow & \mathcal{H}_{+} \\
\widehat{W}_{+}: & \sum_{j \geqslant n} a_{j} z^{j} & \mapsto & \sum_{j \geqslant n} a_{j}\left(p_{j}(z)\right)_{\geqslant n}
\end{array}
$$

$$
\begin{array}{cccc}
\widehat{W}_{n+}: & \mathcal{H}_{+} & \longrightarrow & \mathcal{H}_{n} \tag{B.23d}\\
\widehat{W}_{n+}: & \sum_{j \geqslant n} a_{j} z^{j} & \mapsto & \sum_{j \geqslant n} a_{j}\left(p_{j}(z)\right)_{<n}
\end{array}
$$

where $(f(z))_{\geqslant n}$ and $(f(z))_{<n}$ denote the parts of the Taylor series expansion of $f \in \mathcal{H}$ lying in \mathcal{H}_{+}and \mathcal{H}_{n}, respectively. It follows that the operator

$$
\begin{equation*}
\widehat{K}: \mathcal{H}_{+} \rightarrow \mathcal{H}_{+} \tag{B.24}
\end{equation*}
$$

represented above by the matrix appearing in equation (B.12):

$$
\begin{equation*}
-B W_{n+} W_{+}^{-1} C^{-1} \tag{B.25}
\end{equation*}
$$

is just the rank- n Fredholm integral operator

$$
\begin{equation*}
\widehat{K} f(z)=\int_{\varkappa \Gamma} \mathrm{d} w \mathrm{e}^{-\sum_{k=1}^{d+1} \frac{u_{K}^{(0)}}{K} w^{K}} K(z, w) f(w) \quad f \in \mathcal{H}_{+} \tag{B.26}
\end{equation*}
$$

with the kernel

$$
\begin{equation*}
K(z, w)=\sum_{j=0}^{n-1} \frac{1}{h_{j}}\left(\mathrm{e}^{\sum_{K=1}^{d+1} t_{K} z^{K} / K} p_{j}(z)\right)_{\geqslant n} p_{j}(w) \mathrm{e}^{-\sum_{K=1}^{d+1} t_{K} w^{K} / K} \tag{B.27}
\end{equation*}
$$

and hence, by equation (B.12),

$$
\begin{equation*}
\tau_{W_{0}}(\mathbf{t})=\operatorname{det}(\mathbf{1}-\widehat{K}) . \tag{B.28}
\end{equation*}
$$

References

[1] Adler M, van Moerbeke P and Shiota T 1998 Random matrices, Virasoro algebras and noncommutative KP Duke Math. J. 94 379-431
[2] Adler M and van Moerbeke P 2001 Hermitian, symmetric and symplectic random ensembles: PDEs for the distribution of the spectrum Ann. Math. 153 149-89
[3] Aratyn H and van de Leur J 2001 Integrable structure behind WDVV equations Contribution to NEEDS 2001 Conference Preprint hep-th/0111243 (2002 Theor. Math. Phys. at press)
[4] Bauldry W 1990 Estimates of asymmetric Freud polynomials on the real line J. Approx. Theory 63 225-37
[5] Bertola M, Eynard B and Harnad J 2002 Duality, biorthogonal polynomials and multi-matrix models Commun. Math. Phys. 229 73-120 (CRM-2749 Saclay-T01/047 nlin.SI/0108048)
[6] Bleher P and Its A 1999 Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model Ann. Math. 150 185-266
[7] Bleher P and Its A 1999 On asymptotic analysis of orthogonal polynomials via the Riemann-Hilbert method Symmetries and Integrability of Difference Equations (Canterbury, 1996) (London Math. Soc. Lecture Note Ser., vol 255) (Cambridge: Cambridge University Press) pp 165-77
[8] Bonan S S and Clark D S 1990 Estimates of the Hermite and the Freud polynomials J. Approx. Theory 63 210-24
[9] Borodin A and Deift P 2002 Fredholm determinants, Jimbo-Miwa-Ueno tau-functions, and representation theory Commun. Pure Appl. Math. 55 1160-230
[10] Di Francesco P, Ginsparg P and Zinn-Justin J 1995 2D gravity and random matrices Phys. Rep. 2541
[11] Douglas M R and Shenker S H 1990 Strings in less than one dimension Nucl. Phys. B 335 635-54
[12] Douglas M R 1990 Strings in less than one dimension and the generalized KdV hierarchies Phys. Lett. B 238 176-80
[13] Eynard B 2000 An introduction to random matrices Lectures given at Saclay (Oct. 2000) Notes available at http://www-spht.cea.fr/articles/t01/014
[14] Fokas A, Its A and Kitaev A 1992 The isomonodromy approach to matrix models in 2D quantum gravity Commun. Math. Phys. 147 395-430
[15] Gerasimov A, Marshakov A, Mironov A, Morozov A and Orlov A 1991 Matrix models of two-dimensional gravity and Toda theory Nucl. Phys. B 357 565-618
[16] Harnad J 2002 On the bilinear equations for Fredholm determinants appearing in random matrices J. Nonlinear Math. Phys. 9 530-50
[17] Harnad J and Its A R 2002 Integrable Fredholm operators and dual isomonodromic deformations Commun. Math. Phys. 226 497-530
[18] Harnad J, Tracy C A and Widom H 1993 Hamiltonian structure of equations appearing in random matrices Low Dimensional Topology and Quantum Field Theory ed H Osborn (New York: Plenum) pp 231-45
[19] Ismail M E H and Chen Y 1997 Ladder operators and differential equations for orthogonal polynomials J. Phys. A: Math. Gen. 30 7818-29
[20] Its A R, Kitaev A V and Fokas A S 1991 Matrix models of two-dimensional quantum gravity and isomonodromy solutions of discrete Painleve equations Zap. Nauch. Sem. LOMI 187 3-30 (in Russian) (Engl. transl. 1995 J. Math. Sci. 73 415-29)
[21] Its A R, Kitaev A V and Fokas A S 1990 An isomonodromic approach in the theory of two-dimensional quantum gravity Usp. Matem. Nauk 45 135-6 (in Russian) (Engl. transl. 1990 Russ. Math. Surveys 45 155-7)
[22] Jimbo M, Miwa T and Ueno K 1981 Monodromy preserving deformation of linear ordinary differential equations with rational coefficients I Physica D 2 306-52
[23] Marcellán F and Rocha I A 1998 Complex path integral representation for semiclassical linear functionals J. Approx. Theory 94 107-27
[24] Marcellán F and Rocha I A 1995 On semiclassical linear functionals: integral representations J. Comput. Appl. Math. 57 239-49
[25] Mehta M L 1991 Random Matrices 2nd edn (New York: Academic)
[26] Moore G 1990 Geometry of the string equations Commun. Math. Phys. 133 261-304
[27] Morozov A 1999 Matrix models as integrable systems Particles and Fields (Banff, AB, 1994) (CRM Ser. Math. Phys.) (New York: Springer) pp 127-210
[28] Palmer J 1994 Deformation analysis of matrix models Physica D 78 166-85
[29] Sato M and Sato Y 1983 Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold Nonlinear Partial Differential Equations in Applied Science (Tokyo, 1982) (North-Holland Math. Stud. vol 81) (Amsterdam: North-Holland) pp 259-71
[30] Segal G and Wilson G 1985 Loop groups and equations of KdV type Inst. Hautes Études Sci. Publ. Math. 61 5-65
[31] Szegö G 1939 Orthogonal Polynomials (Providence, RI: AMS)
[32] Tracy C A and Widom H 1993 Introduction to random matrices Geometric and Quantum Methods in Integrable Systems (Springer Lecture Notes in Physics vol 424) ed G F Helminck (New York: Springer) pp 103-30
[33] Tracy C A and Widom H 1994 Level spacing distributions and the Airy kernel Commun. Math. Phys. 159 151-74
Tracy C A and Widom H 1994 Level spacing distributions and the Bessel kernel Commun. Math. Phys. 161 289-309
[34] van Moerbeke P 1997 The spectrum of random matrices and integrable systems Group21 Physical Applications and Mathematical Aspects of Geometry, Groups and Algebras vol II, ed H-D Doebner, W Scherer and C Schulte (Singapore: World Scientific) pp 835-52

